Using Airborne LiDAR and QuickBird Data for Modelling Urban Tree Carbon Storage and Its Distribution - A Case Study of Berlin

نویسندگان

  • Johannes Schreyer
  • Jan Tigges
  • Tobia Lakes
  • Galina Churkina
چکیده

While CO2 emissions of cities are widely discussed, carbon storage in urban vegetation has been rarely empirically analyzed. Remotely sensed data offer considerable benefits for addressing this lack of information. The aim of this paper is to develop and apply an approach that combines airborne LiDAR and QuickBird to assess the carbon stored in urban trees of Berlin, Germany, and to identify differences between urban structure types. For a transect in the city, dendrometric parameters were first derived to estimate individual tree stem diameter and carbon storage with allometric equations. Field survey data were used for validation. Then, the individual tree carbon storage was aggregated at the level of urban structure types and the distribution of carbon storage was analysed. Finally, the results were extrapolated to the entire urban area. High accuracies of the detected tree locations were reached with 65.30% for all trees and 80.1% for dominant trees. The total carbon storage of the study area was 20,964.40 t (σ = 15,550.11 t). Its carbon density equaled 13.70 t/ha. A general center-to-periphery increase in carbon storage was identified along the transect. Our approach methods can be used by scientists and decision-makers to gain an empirical basis for the comparison of carbon storage capacities OPEN ACCESS Remote Sens. 2014, 6 10637 between cities and their subunits to develop adaption and mitigation strategies against climate change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

A Support Vector Regression Approach to Estimate Forest Biophysical Parameters at the Object Level Using Airborne Lidar Transects and QuickBird Data

A potential solution to reduce high acquisition costs for airborne lidar (light detection and ranging) data is to combine lidar transects and optical satellite imagery to characterize forest vertical structure. Although multiple regression is typically used for such modeling, it seldom fully captures the complex relationships between forest variables. In an effort to improve these relationships...

متن کامل

A GEOBIA framework to estimate forest parameters from lidar transects, Quickbird imagery and machine learning: A case study in Quebec, Canada

The GEOgraphic Object-Based Image Analysis (GEOBIA) paradigm continues to prove its efficacy in remote sensing image analysis by providing tools which emulate human perception and combine analyst’s experience with meaningful image-objects. However, challenges remain in the evolution of this new paradigm as sophisticated methods attempt to deliver on the goal of automated geo-intelligence (i.e.,...

متن کامل

New High-resolution Field Surveying Methods for Validation of Crown Attributes from 3d Scanning Laser Data

High density airborne LiDAR data has been used to provide detailed information on tree canopy structure. Recent research has reported that it is difficult to determine where the LiDAR data errors appear on the tree crown, as the returns generally underestimate tree height. This study introduces a novel way to assess vertical and horizontal patterns of airborne LiDAR data error using an error ma...

متن کامل

Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar

A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014